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In this paper an attempt was made to formulate mathematically a reaction coordinate as a valley 
on the energy hypersurface in ^-dimensional space. A numerical procedure has been suggested 
which permits calculation of points lying in this valley. The calculated reaction path is demon-
strated to satisfy boundary conditions demanded by the theory of absolute reaction rates. The 
procedure is amenable to any empirical, semiempirical and nonempirical method and can be 
applied to both unimolecular and bimolecular reactions. 

At the present time two theoretical approaches to the reaction path are most widely used. These 
can be called static and dynamic ones. The latter which is physically more substantiated bears 
analogy to the classical collision theory. It involves solution of classical or quantum mechanical 
equations of motion for a given position and given momenta of reactants in the Hilbert coordinate 
space and construction of trajectories of particles as functions of time1 ~ 3 . The use of the dynamic 
approach is inevitable if the velocity of reacting particles is high as e.g. in the case with reac-
tions in crossed molecular beams. The applications to studies of reaction mechanisms encounter 
difficulties with most reactions because, ordinarily, the initial position and momenta of the react-
ing particles cannot be defined. Estimation of the rate constant then requires extensive computa-
tion for a large number of randomly chosen sets of initial parameters and a subsequent statistical 
treatment of results. 

A considerably more effective treatment is provided by the methods of statistical thermodyna-
mics. According to the theory of absolute reaction rates4 , the rate constant can be determined 
from the thermodynamic functions of reactants and the activated complex. For a complete 
description of the reaction system it is necessary i ) to find the energy and the equilibrium geo-
metry of reactants, 2) to find geometries and energies of all activated complexes, 5) to compare 
the rate constants and to select the one or several of the highest value. The task 1) is feasible 
on empirical5, semiempir ical 6 - 8 and ab initio9 levels. The task 2) has so £ar been solved only 
in part. The geometry of the activated complex has mostly been searched for by assuming the 
symmetry1 0 or some plausible reaction course. In the simplest case only one or two internal 
coordinates were assumed to vary in the reaction. The activated complex was then identified 
with the highest point on the energy curve — one coordinate, or with a saddle point on the energy 
surface — two coordinates. The other coordinates were maintained fixed in the reaction process. 
Treatments of that type encounter difficulties with many reactions because sometimes the choice 
of the proper one or two reaction coordinates is a priori problematic or even impossible at all1 1 . 
Considerable progress has been made since the introduction of minimization methods. The points 
on the reaction coordinate are calculated as local minima on the curves that are intersections 
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of the energy hypersurface with the hyperplanes perpendicular to an a priori chosen internal 
c o o r d i n a t e 1 1 - 1 3 . The pertinent coordinate is identified with the critical coordinate in the sense 
of the theory of absolute reaction rates. The actual applications of the procedure showed the 
phenomenon of chemical hysteresis11 . This mathematical artefact manifests itself in the devia-
tion of the calculated "reaction coordinate" f rom the least energy path. The greater the angle 
was between the direction along the chosen internal coordinate and that of the valley on the 
energy hypersurface, the more distinct was the effect. 

The problem of finding the least energy path of unimolecular reactions in the vicinity of the 
reactant was discussed in r e f s 3 ' 1 4 . The least energy motion was that which was parallel to the 
eigenvector of the matrix of force constants corresponding to the lowest eigenvalue. In chemical 
applications it is sometimes desirable to subject the search for the least energy path to certain 
restrictive conditions {e.g. to disregard hindered rotation or cis-trans isomeration if larger changes 
in structure are to be investigated). In such a case the least energy path is still parallel to some 
eingenvector of the matrix of force constants in the vicinity of the reactant. 

In this paper a procedure is presented which permits a direct calculation of points 
lying on the least energy path. The reaction path calculated in this way will be de-
monstrated to satisfy all boundary conditions required by the theory of absolute 
reaction rates. 

T H E O R E T I C A L 

First it is necessary to define necessary and sufficient conditions for a point, say x, 
to lie on the least energy path, i.e. in the valley of the energy hypersurface. The case 
with the two-dimensional problem is outlined in Fig. 1. Obviously, the following re-
quirements must be satisfied: 1) Energy must increase with all motions along the 
directions perpendicular to the direction of the valley. 2) The curvature of the energy 
surface along the direction of the valley must be lesser than the curvature along any 
other direction. Condition 1) implies there is no nonvanishing component of the 

FIG. 1 
The Valley in the Two-Dimensional Surface 

Valley, > direction of the gradient, - • - • - > direction perpendicular to the valley. 
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gradient in a direction perpendicular to the direction of the valley. In other words, 
the gradient is a tangent to the valley14 at the point x. Condition 2) implies the second 
derivative of energy along the reaction path must be lower than the second derivative 
of energy along any other direction. From this the following conclusion results 
about the eigenvectors of the matrix of second derivatives of energy with respect 
to coordinates: the eigenvector corresponding to the lowest eigenvalue is that which 
must be a tangent to the valley at the point x. 

As stated in the introduction, sometimes it is convenient to lower the number of de-
grees of freedom by disregarding some motions. In such a case a tangent to the valley 
is an eigenvector belonging to the lowest eigenvalue in a subspace spanned by the 
degrees of freedom of interest. To summarize the conditions 1) and 2), the gradient 
in a valley of the energy hypersurface must be parallel to one particular eigenvector 
of the matrix of force constants. 

To calculate the position of the point x^ lying on the reaction path it is convenient 
to use a recursive procedure. Once a point x/J_ l lying in the valley of the energy hyper-
surface is known, the shape of the energy function in the vicinity of xfl_1 permits 
one to arrive at the point x^,, which is a suitable approximation to xM. Let us note 
that with unimolecular reactions the coordinates of xx are the internal coordinates 
of the reactant. The next task of the procedure is to find such a vector r, which on ad-
ding to x^ gives x^ satisfying all requirements mentioned above for a point lying 
in the valley of the energy hypersurface. 

For finding a point x^ use may be made of the fact that the gradient g f l^ l and one 
among the eigenvectors of the matrix of second derivatives of energy, cn>At_l5 is 
a tangent to the valley on the energy hypersurface at the point xfl_1. Generally, pas-
sage from x/1_1 to x^ along the gradient direction is preferable, as the gradient is 
computed usually with a higher precision than the matrix of second derivatives 
of energy. 

On denoting 

<7M-i = (sl-

and 

- 1 = Xn- 1 */i - 2 5 

the following equation holds 

K = *M-1 + sign ( s J - i V — ' M 
9?-i 

where s is an appropriately chosen scalar. If is vanishingly small, it is necessary 
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to carry out the step along the direction of the eigenvector cn /1_ j. This occurs, for 
example, in the first step of unimolecular reactions. 

In the calculation of the vector r we assume that the distance between x ' and x„ is 
H- t* 

so small that the energy hypersurface between the two points can be approximated 
by a surface of second order. Let W', g', and H be the energy, gradient and the matrix 
of second derivatives of energy with respect to coordinates at the point x^. One can then 
write the energy W at the point x^ in the form of a Taylor series 

w = W ' + Y j g f o + l Y D l M , (2) 
i i j 

The components of the gradient g at the point xM are as follows 

9i = 0't + 2 > V j • (3) 
j 

Let cn be the eigenvector which is parallel to the gradient. Then it must hold at the 
point x^ 

g'i + L t f i / j = Acin (4) 
j 

or in the matrix form 

g' + HTr = lcn , (5) 

where A is a till now undetermined scalar. For r it follows 

= I t f r . ' f e - g'j) (6) 
j 

where H^1 is an element of the matrix which is inverse to the H matrix. Since the ex-
pansion (2) lacks terms of the third and higher orders, the matrices of second deriva-
tives at the points x^ and x^ are identical. The it is possible to write 

Hu = D W C j k (7) 
k 

and also 

Hf/ =lE;icikcik, (8) 
k 

where E is the vector of eigenvalues of the H matrix. By introducing (8) into (6) 
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one gets after some manipulation 

ri = - Y E k l c i k s k , (9) 
k 

where sk is defined as a scalar product of the gradient at the point x^ with the k-th 
eigenvector of the matrix of second derivatives of energy. Hence 

% = kdj • (10) j 

For any X one then gets from (9) one vector r and consequently one point x^. From the 
expression (9) it is easy to deduce that all calculated points x^ will lie on the straight 
line colinear with the vector cn. For our purpose only that point x^ is of interest 
which is nearest to x^. In that case the neglect of terms of higher order in the ex-
pansion (2) is most justifiable. Accordingly, it is advantageous to chose r in such 
a way as to be perpendicular to cn. Thus we get 

X>Vin=0. (11) 
i 

By introducing r according to (9), we obtain 

w;114 - xxVcikVMn = o. (12) 
i i k 

From this it follows 

^ = • (13) 

If we insert (13) in (9), we obtain the final relationship for r 

ri = -Y.EkXc (14) 

DISCUSSION 

Before discussing the formula (14) in more detail, let us note the corrective operation 
of the r vector. If the points x^ and xM coincide, then all sk vanish unless k = n (all ck 

eigenvectors are mutually orthogonal and cn is colinear with g). According to (14) 
all 7-j therefore vanish. From that it follows that r = 0 is a necessary condition for 
a point xM to lie in the valley of the energy hypersurface. For the stationary points, 
i.e. stable isomers and activated complexes, all gradient components vanish. By using 
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(10) and (14) it is easy to find that r = 0 is valid in this case, too, and that the sta-
tionary points satisfy the above mentioned condition. 

Eq. (14) is meaningful only if the vector r is finite; with the exception of En no 
eigenvalue Ek of the matrix H may be zero. If the energy and its second derivatives 
are continuous, then in the case of unimolecular reactions it must hold that only one 
eigenvalue can be negative. This follows from the fact that with the reactant all 
eigenvalues of the matrix of second derivatives are positive (the H matrix is positive 
definite) and the passage to a negative value is allowed only for the eigenvalue En. 
The same conclusion concerning one negative eigenvalue must apply to the activated 
complex, too, which conforms to what was required for the behaviour of the activated 
complex in ref.15. 

Since the calculation only gives us a series of equidistant points lying on the reaction 
path, the obtained points lie most likely before or behind a stationary point. The 
best way how to arrive at the latter is to apply Eq. (14) to points x^ by performing 
the summation over all eigenvectors ck. In that case Eq. (14) becomes equivalent 
to the equation 

r = - H 1 g , (15) 

which is widely used for searching for the stationary point on a quadratic surface. 
For actual calculations, however, the form of Eq. (14) is more suitable. 

If the eigenvector cn is degenerate with any vector ck, Eq. (14) cannot be applied 
directly. If the gradient is nonvanishing, the degeneracy is most likely accidental. 
In such a case the most effective procedure was found to be that of performing the 
correction according to Eq. (14) by making use of c{ vectors that are not degenerate 
with cn; the next step is made along the gradient direction. Degeneracy of eigen-
vectors in the case of stationary points implies mostly that the vectors belong to a high-
ly symmetric representation; this will be discussed in the next paper. 

Finally, we note the possibility to apply the procedure presented to bimolecular 
reactions. It is possible to consider the two reactants to constitute one supersystem 
and to apply Eq. (14) without change. The only difference lies in the first step. As one 
does not start from the geometry of the stationary point, some experience is needed 
to guess, at least roughly, the initial orientation of reactants. By multiple applica-
tion of Eq. (14) one arrives at the valley which is nearest to the starting geometry 
assumed. This will be discussed in detail in a later paper. 

The author is indebted to Professor R. Zahradnik for valuable advice and comments and for 
his interest during the course of the work. 
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